Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Chun-Hua Diao,* Min-Jie Guo, Ming Yu, Xin Chen, Zuo-Liang Jing and Qi-Liang Deng

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail:
diao_chunhua@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.191$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[2-(4-Formyl-2-methoxyphenoxy)ethoxy]-3-methoxybenzaldehyde

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$, was prepared by the reaction of 4-hydroxy-3-methoxybenzaldehyde and 1,2-dibromoethane. There are one and a half molecules in the asymmetric unit; one has C_{1} molecular symmetry and the other C_{i}, with the centre of inversion at the mid-point of the aliphatic $\mathrm{C}-\mathrm{C}$ bond. The ethylenedioxy groups are coplanar with the aromatic systems of the vanillin groups.

Comment

Attention has been paid to the syntheses and crystal structures of compounds of the same type as the title compound, (I), owing to their role in crystal engineering (Parashar et al., 1988; Tynan et al., 2005). In the present study, we report the synthesis and structure of (I) (Fig. 1).

In molecule 1, each vanillin group is planar, with r.m.s. deviations for the fitted atoms of $0.0139 \AA(\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 1 / \mathrm{O} 3)$ and $0.0175 \AA$ ($\mathrm{C} 11-\mathrm{C} 16 / \mathrm{C} 18 / \mathrm{O} 2 / \mathrm{O} 5$). The dihedral angle between the two vanillin planes is $3.89(10)^{\circ}$. In molecule 2 , each vanillin group is planar with the r.m.s. deviation for the fitted atoms of $0.0105 \AA$ and the two vanillin groups are exactly parallel by symmetry.

Experimental

To a solution of 4-hydroxy-3-methoxybenzaldehyde (15.2 g , 10 mmol) and potassium carbonate ($13.8 \mathrm{~g}, 10 \mathrm{mmol}$) in acetonitrile (500 ml), 1,2-dibromoethane ($9.4 \mathrm{~g}, 5 \mathrm{mmol}$) was added over a period of 30 minutes and the mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resultant oil was poured into icewater (500 ml). A white precipitate was isolated and recrystallized from ethanol to give a pure compound in 65% yield. Colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$
$M_{r}=330.32$
Monoclinic, $P 2_{b} / n$
$a=14.692$ (4) A
$b=7.805$ (2) \AA
$c=22.048(6) \AA$
$\beta=108.551$ (4) ${ }^{\circ}$
$V=2396.8(11) \AA^{3}$
$Z=6$

Received 13 September 2005
Accepted 12 October 2005
Online 19 October 2005

organic papers

Figure 1

The structure of the two independent molecules of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level [symmetry code: (I) $2-x,-y,-z$.].

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.960, T_{\text {max }}=0.978$
11241 measured reflections

4170 independent reflections
2809 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 10$
$k=-9 \rightarrow 8$
$l=-23 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0898 P)^{2}\right)
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.364(3)$	O5-C17	$1.425(3)$
O1-C9	$1.428(3)$	O6-C18	$1.190(3)$
O2-C11	$1.358(3)$	O7-C19	$1.360(3)$
O2-C10	$1.433(3)$	O7-C27	$1.430(3)$
O3-C2	$1.352(3)$	O8-C24	$1.355(3)$
O3-C8	$1.433(3)$	O8-C26	$1.426(3)$
O4-C7	$1.185(3)$	O9-C25	$1.185(3)$
O5-C12	$1.360(3)$		
C1-O1-C9	$116.68(18)$	C12-O5-C17	$117.21(19)$
C11-O2-C10	$116.97(18)$	C19-O7-C27	$117.84(18)$
C2-O3-C8	$117.3(2)$	C24-O8-C26	$117.09(19)$

H atoms were included in calculated positions and refined using a riding-model approximation. The constrained $\mathrm{C}-\mathrm{H}$ bond lengths and $U_{\text {iso }}(\mathrm{H})$ parameters were $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, and $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Wisconsin, Madison, USA
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. \& Kruger, P. E. (2005). CrystEngComm, 7, 90-95.

